1	Circulation-driven variability of Atlantic anthropogenic carbon transports and uptake
2	
3	Peter J. Brown ^{1*} , Elaine L. McDonagh ^{1,2} , Richard Sanders ^{1,2} , Andrew J. Watson ³ , Rik
4	Wanninkhof ⁴ , Brian A. King ¹ , David A. Smeed ¹ , Molly O. Baringer ⁴ , Christopher S. Meinen ⁴ ,
5	Ute Schuster ³ , Andrew Yool ¹ , Marie-José Messias ³ .
7	1. National Oceanography Centre, Southampton, UK
8	2. NORCE, Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen,
9	Norway
10	3. College of Life and Environmental Sciences, University of Exeter, Exeter, UK
11	4. NOAA / Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida, USA
12	
13	The ocean absorbs approximately a quarter of the carbon dioxide currently released to the
14	atmosphere by human activities (C _{anth}). A disproportionately large fraction accumulates in
15	the North Atlantic due to the combined effects of transport by the Atlantic Meridional
16	Overturning Circulation (AMOC) and air-sea exchange. However, discrepancies exist
17	between modelled and observed estimates of the air-sea exchange due to unresolved ocean
18	transport variability. Here we quantify the strength and variability of C_{anth} transports
19	across 26.5°N in the North Atlantic between 2004 and 2012 using circulation measurements
20	from the RAPID mooring array and hydrographic observations. Over this time period,
21	decreasing circulation strength tended to decrease northward C_{anth} transport, while
22	increasing C_{anth} concentrations (preferentially in the upper limb of the overturning
23	circulation) tended to increase northward C_{anth} transport. These two processes

compensated each other over the 8.5-year period. While ocean transport and air-sea C_{anth} fluxes are approximately equal in magnitude, the increasing accumulation rate of C_{anth} in the North Atlantic combined with a stable ocean transport supply means we infer a growing contribution from air-sea C_{anth} fluxes over the time period. North Atlantic C_{anth} accumulation is thus sensitive to AMOC strength, but growing atmospheric C_{anth} uptake continues to significantly impact C_{anth} transports.

30 The ocean exchanges carbon dioxide (CO_2) rapidly with the atmosphere, with regions of substantial net CO₂ uptake and release created by ocean circulation, biological processes and 31 heat and freshwater fluxes¹. In pre-industrial times the global net CO₂ flux from the ocean to the 32 atmosphere is estimated to have been ~0.45-0.78 Pg C yr⁻¹ balancing riverine carbon inputs^{2,3}. 33 34 However, increasing atmospheric CO₂ concentrations since the beginning of the Industrial 35 Revolution have reversed the flux, transferring anthropogenic carbon (C_{anth}) into the ocean at a rate of 2.6 \pm 0.3 Pg C yr^{-1 4}, slowing the accumulation of anthropogenic CO₂ in the atmosphere 36 and reducing the pace of global warming. This net global oceanic Canth uptake accounts for 37 nearly 50% of all historical fossil fuel emissions⁵ and 23% of total contemporary emissions⁶. 38 Understanding the processes that cause this uptake to occur and their susceptibility to change are 39 therefore high priority activities. 40

The North Atlantic (NA) and Arctic region (from the equator to Bering Strait) is a key region as it plays a disproportionately large role in the uptake of both CO_2 and C_{anth} from the atmosphere. It was a regional sink for atmospheric carbon in pre-industrial times⁷, and now accounts for approximately 25% of all contemporary global CO_2 uptake from the atmosphere^{6,8} and 25% of the global ocean C_{anth} inventory^{4,5,9,10} despite having only 15% of the global ocean surface. The "natural" (i.e. pre-industrial) CO_2 uptake results from both the surface cooling of warm water 47 advected polewards prior to sinking, as part of the Atlantic Meridional Overturning Circulation (AMOC, see Figure 1, adapted from ¹¹), and from strong biological production¹². The AMOC 48 generates a net southwards transport of contemporary (natural and anthropogenic) carbon, with 49 50 lower carbon concentrations in the warm, upper northward flow being exceeded by higher concentrations in the cold, deep return flow^{7,13}. Conversely, the post-industrial build-up of C_{anth} 51 in surface waters generates a surface-enhanced concentration profile (Figure 1 for C_{anth} 52 distribution along 26.5°N); when combined with the action of the overturning circulation this 53 leads to a net northwards transport of C_{anth} into the NA^{13,14}, the opposite direction to the natural 54 carbon transport and contributes to the highest regional Canth accumulation rates in the global 55 ocean^{4,5}. 56

The size, variability and controls of the ocean circulation contribution to regional Canth storage 57 58 and hence the resilience of this sink to global change are largely unknown. Prior observational estimates of NA C_{anth} accumulation, from individual synoptic repeat hydrographic sections, vary 59 widely (0.19-0.43 Pg C yr^{-1 13-17}, Table 1), with more constrained estimates only possible 60 through larger-scale, regional/global analyses (0.38-0.47 Pg C yr⁻¹, based on analyses of ocean 61 inversion and data assimilation models or observational integrations^{4,10,18}). Cruise-based 62 estimates of northwards ocean C_{anth} transports meanwhile (0.17-0.25 Pg C yr^{-1 13-17}) are typically 63 64 much higher than estimates from biogeochemical models, ocean inversions and data assimilations (0.09-0.15 Pg C yr^{-1 4,10,18-20}); this is primarily due to cruise-based C_{anth} transport 65 estimates being based on single "snapshot" estimates of ocean circulation (principally the 66 AMOC), and the inability of biogeochemical models and data assimilations to correctly estimate 67 volume transports¹⁹. Between 27% and 66% of C_{anth} accumulation is thus driven by the 68 69 northward ocean transport (the remainder being taken up from the atmosphere). The magnitude

of the range is indicative of the uncertainty related to unresolved temporal variability,
observational and methodological limitations, and that each estimate is associated with a single
state of the circulation or AMOC strength.

73 It is now clear that individual snapshot estimates of AMOC strength used in previous calculations of C_{anth} uptake (variability of which is removed by the inversion/ assimilation 74 techniques described above) do not fully capture true circulation variability²¹. The AMOC 75 estimated from the RAPID-MOCHA-WBTS programme at 26.5°N²¹ (Figure 1) had an average 76 strength of 17.2 Sv over the 2004-2012 period, with substantial temporal variability (10 day 77 filtered root mean square variability of 4.6 Sv, variability of annual means of 2.2 Sv)^{21,22}. 78 However this variability was superimposed on a significant decreasing trend in AMOC 79 magnitude of -0.54 Sv yr⁻¹ which occurred over the same time period^{23,24}. CMIP5 Earth System 80 models have predicted that weakening of AMOC strength similar in scale to this recently 81 82 observed will lead to a decline in both surface CO₂ uptake and accumulation at depth as climate change feedbacks strengthen²⁵. 83

84 High frequency anthropogenic carbon transport estimates

Here we investigate the impact of observed circulation change on Canth accumulation in the NA 85 between 2004 and 2012 , combining 10-day AMOC transport fields at $26.5^{\circ}N^{21,26}$ with C_{anth} 86 87 concentrations estimates. A time-series of Canth concentration distributions is generated using 88 regressions constructed from all available hydrographic data at 26.5°N and applied to the RAPID-Argo 10-day temperature-salinity fields²⁶ (see Methods, Extended Data Figures 1-3, 89 Extended Data Table 1). Therefore, it includes variability associated with the changing 90 91 distribution of water masses on the section (from RAPID and Argo) and longer-term, water 92 mass-specific concentration trends (from repeat hydrography). In addition, in the upper 200m of 93 the water column we incorporate a new Scaled PreIndustrial DisEquilibrium (SPIDEr) method based on sea-surface pCO₂ observations to account for seasonal variation of the C_{anth} 94 concentration that has not been included in previous treatments¹⁵; this ensures feasible year-95 96 round concentration ranges that are consistent with Revelle factor (Rf) variability and air-sea fluxes (Methods, Extended Data Figures 4-5). For the region east of the Bahamas, estimated Canth 97 distributions are combined with 10-day mooring/float derived transport fields, while in Florida 98 99 Straits we calculate a transport-weighted Canth (Canth transport divided by volume transport) timeseries from repeat hydrographic sections that enables combination with the submarine cablederived transport time-series (Methods, Extended Data Figure 6). Uncertainties in C_{anth} transports were calculated following the approach used for freshwater transport²⁶ but also accounting for uncertainties associated with Canth estimation and trends (Methods, Extended Data Table 2). The uncertainty in volume transport contributes 70% to the total error estimate, with uncertainties relating to the Canth concentrations contributing approximately 30%. We analysed the robustness and appropriateness of the methodology employed for estimating Canth and its transport for the time between hydrographic sections by using model outputs. Predicted Canth transport fields (generated as for observations, using predictive parameterisations of model 'truth' Canth) were compared with explicitly determined model Canth transport fields (based on parallel NEMO-MEDUSA 1° model runs with and without atmospheric CO₂ growth and with identical physical fields), and suggested the approach can reproduce the 2004-2012 model mean to within 3% of the model truth, and shorter-term estimates (1 month) to within ~9% (worstcase) (Methods, Extended Data Figure 7). Finally, we tested the back-calculation C_{anth} estimation method employed on hydrographic data by direct application to model outputs; results showed 115 accuracy to within 0.5% for the 2004-2012 C_{anth} transport model mean and to within ~7% for

shorter, 1-month estimates (Methods, Extended Data Figure 8).

117 Circulation components of anthropogenic carbon transport

Figure 2 summarizes the transport of Canth across the 26.5°N section. A mean northwards Canth 118 transport is calculated for 2004-2012 of 0.191 ± 0.013 Pg C yr⁻¹ (mean \pm total uncertainty in 119 120 time-series mean, Figure 2a black line, Extended Data Table 2, Methods). This lies within the 121 range of previous estimates determined from hydrography, but is larger than that derived from inversion models (Table 1). The mean net Canth transport is largely set by the difference between 122 the northward Florida Straits transport and the southward interior transport between 0-1100 db, 123 124 the two largest transport components (Figure 2a, Table 2). Although the mean volume transport 125 in Florida Straits (31.6 Sv) is greater than the geostrophic interior transport (-18.6 Sv) the transport-weighted C_{anth} for the interior (65.6 µmol kg⁻¹) is higher than that for Florida Straits 126 (54.4 µmol kg⁻¹), reflective of the accumulation of C_{anth} in surface waters as they recirculate in 127 the anticyclonic gyre from the western boundary (Figure 1). Contributions from northwards 128 Ekman C_{anth} transports (3.5 Sv, driven by surface winds and calculated from ERA-Interim data) 129 enhance the net total Canth transport, and show strong variability and occasional southward 130 incursions. While the combined transports between 1100-5000 db (-18.7 Sv) make up the 131 smallest contribution to the overall Canth transport (southward export of 0.09 Pg C yr⁻¹, transport-132 weighted C_{anth} 12.5 µmol kg⁻¹, Table 2, Figure 2a), they do represent the NA's input to long-term 133 storage of carbon in the deep ocean, equivalent to 4% of the total annual global C_{anth} uptake rate⁴. 134 There is a high degree of variability over the 8.5-year record, with a maximum annual peak-to-135 peak amplitude of 0.48 Pg C yr⁻¹ (Dec 2008 to Dec 2009, Figure 2a/d), a standard deviation of 136 10-day transport estimates of 0.08 Pg C yr⁻¹ and substantial interannual variability with annual 137

means ranging from 0.11 to 0.23 Pg C yr⁻¹ (Figure 2b). Application of a 3-month low-pass filter
reveals a strong seasonal cycle (amplitude 0.08 Pg C yr⁻¹, Figure 2c).

Following methods used for freshwater²⁶ we additionally separated C_{anth} transport into 140 141 overturning, horizontal and throughflow components (Figure 2d) as an indication of the 142 dominant components of C_{anth} transport strength and variability: overturning describes the transport's vertical structure (zonally-averaged Canth and velocity fields with the section average 143 144 removed), horizontal represents the gyre and eddy transports (calculated as the total C_{anth} transport with mean and overturning contributions removed), and throughflow represents the 145 ~0.8 Sv of Pacific water that flows southwards through the Atlantic from Bering Strait (see 146 Methods for details). The throughflow component is almost zero for C_{anth} (-0.8 Tg C yr⁻¹, 1000 147 Tg=1Pg) as per previous studies^{13,15} and is not shown. The overturning C_{anth} transport is 148 northwards (mean \pm standard deviation: $+0.31 \pm 0.09$ Pg C yr⁻¹), its sign representative of the 149 upper ocean northward limb having higher Canth concentrations than its deep, southward-flowing 150 151 limb (Figure 1, Table 2).

The horizontal C_{anth} transport is southwards (mean \pm standard deviation: -0.11 \pm 0.02 Pg C yr⁻¹) 152 and derives from the west-east Canth concentration gradient combining with both the north- and 153 southward gyre and eddy transports, and the horizontal component of the Florida Straits transport 154 155 being compensated by southward flow in the upper ocean of the interior east of the Bahamas. The horizontal C_{anth} transport component is smaller in magnitude and less variable than the 156 overturning component (Figure 2d), with AMOC volume transport variability describing 80% of 157 the variance in C_{anth} transports. This strong AMOC:C_{anth} transport correlation at 26.5°N (Figure 158 3a) is supported by model outputs¹⁹ and here indicates a 1 Sv increase in overturning is 159 associated with an 18 Tg C yr⁻¹ increase in C_{anth} transport. There is temporal structure in the 160

161 correlation's residual (Figure 3b) with the residual growing over the length of the time-series; 162 this represents that part of the variability that is not correlated with the AMOC (such as 163 increasing C_{anth} loadings) and can be interpreted as an increase in the sensitivity of C_{anth} 164 transports per Sverdrup of AMOC.

Despite increasing Canth concentrations there is no trend in the total Canth transport across 26.5°N 165 166 between 2004-2012. Significant trends are however present in the subregions, with the largest 167 (and near-compensating) trends associated with the two largest components (positive trend, Florida Straits; negative trend, upper mid-ocean, Table 2). Although the C_{anth} transport-AMOC 168 correlation and a decrease in AMOC strength of -0.54 Sv yr⁻¹ observed between 2004-2012²³ 169 predicts a decreasing overturning component trend (-10 Tg C yr⁻²), the observed value is much 170 smaller (-6 Tg C yr⁻²) due to increasing C_{anth} concentrations. The overturning trend is not 171 replicated in the total C_{anth} transport trend (-0.4 Tg C yr⁻²) due to a compensating trend in the 172 horizontal gyre component (+5 Tg C yr⁻²). 173

174 Circulation change and water column C_{anth} accumulation

We can separate the impact of circulation change and water column C_{anth} accumulation on total and component C_{anth} transports by removing water mass-specific C_{anth} trends from the predicted C_{anth} fields and recombining the residual with the volume transport estimates. The time-series generated represents the effect of volume transport trends on an unchanging C_{anth} field while the difference from the full transport time-series reflects the effect of additional C_{anth} load (Figure 4 and Table 2). For the total northwards C_{anth} transport, this shows that circulation changes cause a decline of -94 Tg C yr⁻¹ over 8.5 years.

However, this is balanced by an increasing transport due to growing C_{anth} concentrations derived from air-sea exchange of 89 Tg C yr⁻¹. Together they generate a total C_{anth} transport with no significant trend, thus implying that for 2004-2012 C_{anth} increases are counter-balanced by the effect of circulation change on the total oceanic supply of C_{anth} to the NA. For individual C_{anth} transport components and subregions, Florida Straits and the upper ocean interior still dominate; the increasing northward trend in Florida Straits is driven by growing C_{anth} loads (19 Tg C yr⁻¹); the increasingly southward (negative) interior trend is ~¹/₃ due to increasing C_{anth} concentrations (-6 Tg C yr⁻¹) and ~²/₃ due to volume transport decreases (-12 Tg C yr⁻¹).

190 The horizontal C_{anth} transport is increasing (becoming more northward) because the Florida Straits transport-weighted Canth trend is larger than the trend in the interior. The difference in the 191 192 trends is due to Canth concentrations increasing faster at the western boundary than at the eastern 193 boundary, thereby diminishing the west-to-east gradient (Figure 1). The decreasing trend in 194 overturning volume transport over the period is produced by balancing increases in southward moving upper waters (-0.48 Sv yr⁻¹) and reductions in southward-moving deep waters (3000-195 5000 db; +0.48 Sv yr⁻¹). This then creates an associated reduction in the northward C_{anth} 196 197 overturning transport.

198 North Atlantic anthropogenic carbon budget

For the NA and Arctic region (26.5°N to Bering Strait), a regional C_{anth} budget of ocean transport, storage and air-sea fluxes can be formed using a storage rate of 0.39-0.47 Pg C yr⁻¹ for 2004^{10,15,18}. Combining our derived northward transport across 26.5°N of 0.191 Pg C yr⁻¹ with the total C_{anth} contribution through Bering Strait (0.008 Pg C yr⁻¹)¹⁵, suggests that lateral oceanic transport supplies between 42% and 51% of the C_{anth} accumulating in the NA and Arctic. The remainder of the storage term must then originate from air-sea uptake (0.19-0.27 Pg C yr⁻¹).

The dominant air-sea flux contribution calculated here compares well with estimates from ocean inversions¹⁸ and ocean assimilations¹⁰ for the same timeframe (0.28-0.35 Pg C yr⁻¹, Table 1), 207 despite ocean C_{anth} transport estimates differing somewhat. However, it differs markedly from 208 the only previous estimate from observations where ocean transport dominates and air-sea uptake 209 supplies only 0.13 Pg C yr⁻¹ (33%) to C_{anth} inventory growth for 2004¹⁵. This difference comes 210 largely from our revised estimate of the ocean transport term that, as the time-series and our 211 seasonal correction to the near-surface concentrations show, exhibits large seasonal and 212 interannual variability which have not previously been taken into consideration and are aliased in 213 hydrographic-only transport estimates.

Contemporary sea-to-air CO_2 flux estimates calculated using sea surface ΔpCO_2 observations 214 suggest an annual uptake for the NA-Arctic region north of 14-18°N of -0.53-0.63 Pg C yr⁻¹ for 215 2004^{27,28} (regional extents differ somewhat from ours, due to the choice of latitudinal boundaries 216 by previous studies). Our C_{anth} uptake estimate of -0.19-0.27 Pg C yr⁻¹ constitutes 40% of this 217 signal, with the remainder (mean \pm range -0.35 ± 0.08 Pg C yr⁻¹) being the "natural" uptake that 218 219 would also have existed pre-industrially, a value consistent with global inverse model outputs (natural air-sea CO₂ flux neglecting riverine contribution -0.33 ± 0.08 Pg C yr⁻¹, and C_{anth} air-sea 220 flux -0.31 \pm 0.08 Pg C yr⁻¹ scaled to 2004)^{18,29}. Our revised estimate for the C_{anth} transport into 221 222 the region provides consistency between observational and model estimates of the anthropogenic and pre-industrial components of the NA's uptake of atmospheric CO₂. 223

The results presented here establish a strong relationship between the strength of the Atlantic overturning circulation and the oceanic contribution to the growing NA C_{anth} inventory (as inferred from rising air-sea CO_2 uptake^{28,30} and historical storage increases³¹), confirming the recent outputs of a biogeochemical model¹⁹. The northward C_{anth} transport is highly variable on both short (10 day) and annual time periods, but when averaged over a nearly-decadal period it shows no significant trend. Though as regional C_{anth} accumulation continues to increase⁴, this 30 implies a decrease in the relative contribution from northward ocean C_{anth} transport. This result 31 places greater emphasis on air-sea fluxes as the means by which local C_{anth} storage rates are 32 maintained.

33 The overturning circulation is still the primary conduit in the NA by which CO₂ is both absorbed from the atmosphere (the AMOC-related transport and fluxes of heat and nutrients drive the 34 strength of both physical and biological carbon pumps) and C_{anth}-rich waters are isolated from 35 the surface on extended timescales^{12,32}. While the long-term NA carbon sink is currently thought 36 to be tracking the atmospheric CO_2 increase³⁰, surface warming is beginning to affect the uptake 37 capacity of the subtropics³³. This change combined with predicted long-term changes in AMOC 38 strength³⁴ and buffering capacity³⁵ imparts substantial uncertainty to the future behaviour of the 39 North Atlantic carbon sink over the twenty-first century^{20,25} and its ability to slow atmospheric 40 CO₂ increase rates. 41

242

243 ONLINE CONTENT

Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper

247

248 REFERENCES

249	1.	Sarmiento, J. L. & Gruber, N. Carbon Cycle, CO, and Climate. in Ocean

- 250 *Biogeochemical Dynamics* 392–457 (Princeton Univ. Press Princeton, NJ, 2006).
- Jacobson, A. R., Fletcher, S. E. M., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint
 atmosphere-ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-

253		scale fluxes. Global Biogeochem. Cycles 21, (2007).
254	3.	Resplandy, L. et al. Revision of global carbon fluxes based on a reassessment of oceanic
255		and riverine carbon transport. Nat. Geosci. 11, 504-509 (2018).
256	4.	Gruber, N. et al. The oceanic sink for anthropogenic CO 2 from 1994 to 2007. Science
257		<i>(80).</i> 363 , 1193–1199 (2019).
258	5.	Sabine, C. L. et al. The Oceanic Sink for Anthropogenic CO2. Science (80). 305, 367
259		LP – 371 (2004).
260	6.	Friedlingstein, P. et al. Global Carbon Budget 2019. Earth Syst. Sci. Data 11, 1783–1838
261		(2019).
262	7.	Broecker, W. S. & Peng, T. H. Interhemispheric transport of carbon dioxide by ocean
263		circulation. Nature 356 , 587–589 (1992).
264	8.	Landschützer, P., Gruber, N. & Bakker, D. C. E. An observation-based global monthly
265		gridded sea surface pCO2 and air-sea CO2 flux product from 1982 onward and its
266		monthly climatology (NCEI Accession 0160558), Version 5.5. (2020).
267	9.	Khatiwala, S. et al. Global ocean storage of anthropogenic carbon. Biogeosciences 10,
268		2169–2191 (2013).
269	10.	Devries, T. The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports
270		over the industrial era. Global Biogeochem. Cycles 28, 631-647 (2014).
271	11.	Srokosz, M. a. & Bryden, H. L. Observing the Atlantic Meridional Overturning
272		Circulation yields a decade of inevitable surprises. Science (80). 348, 1255575–1255575
273		(2015).
274	12.	Sarmiento, J., Gruber, N., Brzezinski, M. & Dunne, J. High-latitude controls of
275		thermocline nutrients and low latitude biological productivity. Nature 427, 56-60 (2004).

276	13.	Macdonald, A. M., Baringer, M. O., Wanninkhof, R., Lee, K. & Wallace, D. W. R. A
277		1998–1992 comparison of inorganic carbon and its transport across 24.5°N in the Atlantic.
278		Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 3041–3064 (2003).
279	14.	Rosón, G., Ríos, A. F., Pérez, F. F., Lavın, A. M. & Bryden, H. L. Carbon distribution,
280		fluxes, and budgets in the subtropical North Atlantic Ocean (24.5°N). J. Geophys. Res.
281		108 , 3144 (2003).
282	15.	Pérez, F. F. et al. Atlantic Ocean CO2 uptake reduced by weakening of the meridional
283		overturning circulation. Nat. Geosci. 6, 146-152 (2013).
284	16.	Álvarez, M., Ríos, A. F., Pérez, F. F., Bryden, H. L. & Rosón, G. Transports and budgets
285		of total inorganic carbon in the subpolar and temperate North Atlantic. Global
286		Biogeochem. Cycles 17, 2-1-2–21 (2003).
287	17.	Zunino, P. et al. Transports and budgets of anthropogenic CO 2 in the tropical North
288		Atlantic in 1992-1993 and 2010-2011. Global Biogeochem. Cycles 29, 1075–1091 (2015).
289	18.	Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO 2 uptake, transport,
290		and storage by the ocean. Global Biogeochem. Cycles 20, n/a-n/a (2006).
291	19.	Racapé, V. et al. Transport and storage of anthropogenic C in the North Atlantic Subpolar
292		Ocean. Biogeosciences 15, 4661–4682 (2018).
293	20.	Tjiputra, J. F., Assmann, K. & Heinze, C. Anthropogenic carbon dynamics in the
294		changing ocean. Ocean Sci. 6, 605-614 (2010).
295	21.	McCarthy, G. D. et al. Measuring the Atlantic Meridional Overturning Circulation at
296		26°N. Prog. Oceanogr. 130, 91–111 (2015).
297	22.	Cunningham, S. A. et al. Temporal variability of the Atlantic meridional overturning
298		circulation at 26.5°N. Science (80). 317, 935–938 (2007).

- 23. Smeed, D. A. *et al.* Observed decline of the Atlantic meridional overturning circulation
 2004-2012. *Ocean Sci.* 10, 29–38 (2014).
- 301 24. Smeed, D. A. *et al.* The North Atlantic Ocean Is in a State of Reduced Overturning.
 302 *Geophys. Res. Lett.* 45, 1527–1533 (2018).
- 303 25. Schwinger, J. *et al.* Nonlinearity of Ocean Carbon Cycle Feedbacks in CMIP5 Earth
 304 System Models. *J. Clim.* 27, 3869–3888 (2014).
- 305 26. McDonagh, E. L. *et al.* Continuous Estimate of Atlantic Oceanic Freshwater Flux at
 306 26.5°N. *J. Clim.* 28, 8888–8906 (2015).
- 307 27. Takahashi, T. *et al.* Climatological mean and decadal change in surface ocean pCO2, and
 308 net sea-air CO2 flux over the global oceans. *Deep Sea Res. Part II Top. Stud. Oceanogr.*309 56, 554–577 (2009).
- 310 28. Schuster, U. *et al.* An assessment of the Atlantic and Arctic sea–air CO₂ fluxes, 1990–
 311 2009. *Biogeosciences* 10, 607–627 (2013).
- 312 29. Gruber, N. *et al.* Oceanic sources, sinks, and transport of atmospheric CO 2. *Glob.*313 *Biogeochem. Cycles* 23, GB1005 (2009).
- 314 30. Mckinley, G. A., Fay, A. R., Takahashi, T. & Metzl, N. Convergence of atmospheric and
 315 North Atlantic carbon dioxide trends on multidecadal timescales. *Nat. Geosci.* 4, 606–610
 316 (2011).
- 317 31. Woosley, R. J., Millero, F. J. & Wanninkhof, R. Rapid anthropogenic changes in CO 2
 318 and pH in the Atlantic Ocean: 2003-2014. *Global Biogeochem. Cycles* 30, 70–90 (2016).
- 319 32. Steinfeldt, R., Rhein, M., Bullister, J. & Tanhua, T. Inventory changes in anthropogenic
 320 carbon from 1997–2003 in the Atlantic Ocean between 20°S and 65°N. *Global*
- 321 Biogeochem. Cycles 23, 1–11 (2009).

322	33.	Fay, A. R. & McKinley, G. A. Global trends in surface oceanpCO2 from in situ data.
323		<i>Global Biogeochem. Cycles</i> 27 , 541–557 (2013).
324	34.	Cheng, W., Chiang, J. C. H. & Zhang, D. Atlantic Meridional Overturning Circulation
325		(AMOC) in CMIP5 Models: RCP and Historical Simulations. J. Clim. 26, 7187–7197
326		(2013).
327	35.	Halloran, P. R. et al. The mechanisms of North Atlantic CO2 uptake in a large Earth
328		System Model ensemble. <i>Biogeosciences</i> 12, 4497–4508 (2015).
329	36.	Guallart, E. F., Pérez, F. F., Rosón, G. & Ríos, A. F. High spatial resolution Alkalinity and
330		pH measurements along 24 . 5 ° N in 1992 Institut de Ciències del Mar , CSIC Passeig
331		Marítim de la Barceloneta , 37-49 08003 Barcelona , Spain Instituto de Investigaciones
332		Marinas, CSIC Eduardo Cabello, 6 Facultad. 5, (2010).
333	37.	Brown, P. J., Bakker, D. C. E., Schuster, U. & Watson, A. J. Anthropogenic carbon
334		accumulation in the subtropical North Atlantic. J. Geophys. Res. 115, C04016 (2010).
335	38.	Schuster, U. et al. Measurements of total alkalinity and inorganic dissolved carbon in the
336		Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010. Earth Syst. Sci.
337		Data 6, 175–183 (2014).
338	39.	Guallart, E. F. et al. Trends in anthropogenic CO2 in water masses of the Subtropical
339		North Atlantic Ocean. Prog. Oceanogr. 131, 21–32 (2015).
340	40.	Wanninkhof, R. et al. Ocean acidification along the Gulf Coast and East Coast of the
341		USA. Cont. Shelf Res. 98, 54-71 (2015).
342	41.	Olsen, A. et al. GLODAPv2.2019 – an update of GLODAPv2. Earth Syst. Sci. Data 11,
343		1437–1461 (2019).
344	42.	Vázquez-Rodríguez, M. et al. Anthropogenic carbon distributions in the Atlantic Ocean:

345		data-based estimates from the Arctic to the Antarctic. <i>Biogeosciences</i> 6, 439–451 (2009).
346	43.	Touratier, F., Azouzi, L. & Goyet, C. CFC-11, Δ 14 C and 3 H tracers as a means to assess
347		anthropogenic CO 2 concentrations in the ocean. <i>Tellus B</i> 59 , 318–325 (2007).
348	44.	Gruber, N., Sarmiento, J. L. & Stocker, T. F. An improved method for detecting
349		anthropogenic CO2 in the oceans. Global Biogeochem. Cycles 10, 809-837 (1996).
350	45.	Waugh, D. W., Hall, T. M., Mcneil, B. I., Key, R. & Matear, R. J. Anthropogenic CO 2 in
351		the oceans estimated using transit time distributions. Tellus B Chem. Phys. Meteorol. 58,
352		376–389 (2006).
353	46.	Yool, A., Oschlies, A., Nurser, A. & Gruber, N. A model-based assessment of the TrOCA
354		approach for estimating anthropogenic carbon in the ocean. Biogeosciences 7, 723-751
355		(2010).
356	47.	de Boyer Montégut, C., Madec, G., Fischer, A., Lazar, A. & Iudicone, D. Mixed layer
357		depth over the global ocean: An examination of profile data and a profile-based
358		climatology. J. Geophys. Res. 109, C12003 (2004).
359	48.	Álvarez, M. & Gourcuff, C. Uncoupled transport of chlorofluorocarbons and
360		anthropogenic carbon in the subpolar North Atlantic. Deep Sea Res. Part I Oceanogr. Res.
361		<i>Pap.</i> 57 , 860–868 (2010).
362	49.	Landschützer, P. et al. A neural network-based estimate of the seasonal to inter-annual
363		variability of the Atlantic Ocean carbon sink. <i>Biogeosciences</i> 10, 7793–7815 (2013).
364	50.	Bakker, D. C. E. et al. A multi-decade record of high-quality fCO2 data in version 3 of the
365		Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8, 383-413 (2016).
366	51.	GLOBALVIEW-CO2. Cooperative Atmospheric Data Integration Project - Carbon
367		Dioxide; NOAA ESRL, Boulder, Colorado; [Also available on Internet via anonymous

368		FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW]. (2011).
369	52.	Körtzinger, A. Methods of Seawater Analysis, Chap. Determination of Carbon Dioxide
370		Partial Pressure (pCO2). Verlag Chemie 149–158 (1999).
371	53.	Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc.
372		77, 437–471 (1996).
373	54.	Takahashi, T. et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and
374		CaCO3 saturation in the global surface ocean, and temporal changes at selected locations.
375		<i>Mar. Chem.</i> 164 , 95–125 (2014).
376	55.	van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E. & Wallace, D. W. R. MATLAB
377		Program Developed for CO2 System Calculations, ORNL/CDIAC-105b. (2011)
378		doi:10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1.
379	56.	Gruber, N. Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem. Cycles 12,
380		165–191 (1998).
381	57.	Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton
382		and organic matter. Nat. Geosci. 6, 279–283 (2013).
383	58.	Baringer, M. O. N. & Larsen, J. C. Sixteen years of Florida Current transport at 27 N.
384		Geophys. Res. Lett. 28, 3179–3182 (2001).
385	59.	Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data
386		assimilation system. Q. J. R. Meteorol. Soc. 137, 553-597 (2011).
387	60.	Couldrey, M. P., Oliver, K. I. C., Yool, A., Halloran, P. R. & Achterberg, E. P. On which
388		timescales do gas transfer velocities control North Atlantic CO2 flux variability? Global
389		Biogeochem. Cycles 30, 787–802 (2016).
390	61.	Álvarez, M., Ríos, A. F., Pérez, F. F., Bryden, H. L. & Rosón, G. Transports and budgets

391		of total inorganic carbon in the subpolar and temperate North Atlantic. Global			
392		Biogeochem. Cycles 17, 1002 (2003).			
393	62.	Lee, K. et al. An updated anthropogenic CO2 inventory in the Atlantic Ocean. Global			
394		Biogeochem. Cycles 17, art. no1116 (2003).			
395	63.	Brewer, P. G., Bradshaw, A. L., Shafer, D. K. & Williams, R. T. Measurements of total			
396		carbon dioxide and alkalinity in the North Atlantic Ocean in 1981. in The Changing			
397		Carbon Cycle: A Global Analysis (eds. Trabalka, J. R. & Reichle, D. E.) 348-370			
398		(Springer, 1986).			
399					
400	CORI	RESPONDING AUTHOR			
401	All co	prespondence and requests for materials should be addressed to P.J.B.			
402	(peter.brown@noc.ac.uk)				
403					
404 405	ACK	NOWLEDGEMENTS			
406	The a	uthors are grateful for support from the UK Natural Environment Research Council			
407	throug	gh projects 'Radiatively Active Gases from the North Atlantic Region and Climate Change'			
408	(RAG	NARoCC) NE/K00249X/1, 'Atlantic Biogeochemical Fluxes' (ABC-Fluxes)			
409	NE/M	1005046/1 and RAPID-AMOC ((P.J.B., E.L.M., B.A.K., R.S., A.J.W., U.S., MJ.M,			
410	D.A.S	.), the NOAA Global Ocean Monitoring and Observation Program (GOMO) (via the			
411	Weste	ern Boundary Time Series project; FundRef number 100007298) and the NOAA Atlantic			
412	Ocear	nographic and Meteorological Laboratory (M.O.B., C.S.M., R.W.).			
413					

414 AUTHOR CONTRIBUTIONS

415	E.L.M., B.A.K, R.S. and A.J.W designed the study. P.J.B performed the analysis. P.J.B., E.L.M.,
416	R.S. and A.J.W wrote the manuscript. D.S., U.S., M.O.B., C.S.M. and R.W. gave technical
417	support and conceptual advice. M.O.B., C.S.M., A.Y., U.S. & MJ.M. contributed observational
418	data.
419	
420	COMPETING INTERESTS
421	The authors declare no competing interests.
422	
423	

425 FGURE LEGENDS

Figure 1. Atlantic Meridional Overturning Circulation observing system mooring array at 26.5°N with 2010 anthropogenic carbon distribution. Ekman transport is represented by black arrows, warm water circulation in the top 1100m is represented by red arrows, and blue arrows represent the mainly southward flow of colder, deeper waters. Adapted from ¹¹ – reprinted with permission from AAAS.

431

432 Figure 2. Anthropogenic carbon transports across 26.5°N in the subtropical North Atlantic. (a) 433 Ten-day (normal) and three month low-pass (bold) time-series of C_{anth} transports in (from top to 434 bottom): Florida Straits Gulf Stream (red), total transport (black), Ekman layer (blue), 3000-435 5000m (grey), 1100-3000m (yellow), and top 1100m (pink-magenta) from April 2004 to October 436 2012. (b) Annual averages and standard error of the mean of C_{anth} transports for April-March. (c) 437 Seasonal cycle of C_{anth} transports using monthly data and 3 month low-pass filtered data, error 438 envelope of 1 standard devation. (d) Ten-day (normal) and three month low-pass (bold) time-439 series of total anthropogenic carbon transport (black) and its overturning (blue) and horizontal 440 (orange) components. Dashed lines indicate the linear trend over the same timeframe. Positive 441 values indicate northwards transport.

442

Figure 3. AMOC-C_{anth} transport co-variability and non-AMOC variability. (a) Relationship between strength of meridional overturning circulation and magnitude of anthropogenic carbon transport at 26.5°N. Colour scale relates each data point to the time-series in Figure 1. Diamonds represent April to March annual means with AMOC values from ref 17. (b) Residual between

- observed C_{anth} transport and that predicted by linear AMOC-C_{anth} transport relationship versus
 time, describing variability that does not vary coherently with the AMOC. Dotted line is the
 linear trend of this residual between April 2004 and October 2012.
- 450

Figure 4. Impact of increasing anthropogenic carbon concentrations on ocean C_{anth} transport. (a) Ten-day (normal) and three month low-pass (bold) time-series of total anthropogenic carbon transport including (red) and ignoring (blue) effect of C_{anth} accumulating in the water column since 2002 for time-period between April 2004 and October 2012. (b) Difference between the two time-series in (a). The effect of C_{anth} accumulating in the water column since 2002 on ocean C_{anth} transports at 26.5°N on ten-day (blue) and three month low-pass (black) time scales.

- 457
- 458

Method	Year C_{anth} Transport (Pg C yr ⁻¹) & Contribution to			Storage (Pg C yr ⁻¹)	Air-sea C _{anth} flux (Pg C yr ⁻¹) & Contribution to	Citation		
	DOTU	storag	ge ^a		storage			
FROM GLOBAL	ESTIM	IATES	0.01			20		
Biogeochemical	2000	$0.15 \pm$	0.01	-	-	19		
Model	2007	0.09 ± 0.02	$\frac{2(31\%)}{1(220/)}$	0.29	0.20 (69%)	18		
Ocean Inversion	1995	0.12 ± 0.01	1 (33%)	0.39	0.28 (67%)			
assimilation	2004	0.12 ± 0.01	1 (27%)	0.47	0.35 (73%)	10		
Observational Integration	2000	-		0.38	-	4		
FROM SYNOPT	IC OBS	ERVATIONS						
	1992	0.24 ± 0.08	8 (58%)	0.43	0.18 (42%)	16		
	1992	0.23 ± 0.08	8 (122%)	0.19-0.43 ^b	-0.05 to 0.19	14		
Hydrographic	1992	0.17 ± 0.06	6 (82%)	0.22°	0.04 (18%)	13		
sections	1992	0.20 ± 0.02	2	0.22	0.01 (10/0)	17		
	1998	0.20 ± 0.08	8 (95%)	0.22^{c}	0.01 (5%)	13		
	2004	0.25 ± 0.03	5 (66%)	0.39	0.13 (24%)	15		
	2011	0.25 ± 0.02	2		· · · · · · · · · · · · · · · · · · ·	17		
	2004	0.101	47%	0.39-0.47 ^d	0.19-0.27 (~53%)			
This study	to	$0.191 \pm$	to	to	to			
	2012	0.015	41 %	$0.45 \text{-} 0.53^{\text{d}}$	0.25-0.33 (~59%)			
	2004	0.16 ± 0.08	(36%) ^e	0.430 ^d				
	2005	0.22 ± 0.07	(50%) ^e	0.438 ^d				
	2006	0.22 ± 0.06	(49%) ^e	0.445 ^d				
	2007	0.21 ± 0.06	(46%) ^e	0.453 ^d				
	2008	0.20 ± 0.07	(43%) ^e	0.460 ^d				
	2009	0.12 ± 0.09	(25%) ^e	0.468 ^d				
	2010	0.19 ± 0.08	(40%) ^e	0.475 ^d				
	2011	0.23 ± 0.06	(48%) ^e	0.483 ^d				
	2012	0.20 ± 0.08	(41%) ^e	0.490 ^d				

462	Table 1. Summary of historical estimates of C_{anth} transport across 26.5°N, and storage / air-sea
463	flux terms derived from North Atlantic Canth budgets. ^a Relative contribution to storage reflects
464	total oceanic Canth transport and thus includes Bering Strait contribution. ^b Storage range
465	calculated following ref 14 , using range of surface layer carbon change of 0.75-1.75 µmol kg ⁻¹ .
466	^c Storage term calculated as residual of other components (transport, air-sea fluxes). ^d Storage
467	estimates for 2004 (and scaled to 2012) from refs ¹⁰ and ¹⁸ . ^e Annual averages are calculated on an
468	April to March basis due to time-series beginning in April 2004; contributions to storage are
469	calculated as an average from different storage estimates.

	Volume transport		Transport-weighted C _{anth}		C _{anth} transport		Contribution to C _{anth} transport trend due to:	
Variable	Mean (std dev)	Trend (std err)	Mean (std dev)	Trend (std err)	Mean (std dev)	Trend (std err)	Volume transport changes	C _{anth} field changes
	Sv	Sv yr ⁻¹	µmol kg⁻ 1	µmol kg ⁻ ¹ yr ⁻¹	Tg C yr ⁻¹	Tg C yr ⁻²	Tg C yr ⁻²	Tg C yr ⁻²
Florida Straits	31.58 (2.71)	-0.091 (0.062)	54.4 (3.9)	1.57 (0.0001)	634 (68)	17 (1.3)	-2	19
Ekman	3.53 (2.56)	0.002 (0.059)	74 (9.2)	1.19 (0.2)	97 (71)	2 (2)	0.1	2
Interior: - 0-1100 db minus Ekman	-18.37 (3.43)	-0.476 (0.074)	65.6 (4.4)	0.86 (0.09)	-453 (76)	-18 (1.5)	-12	-6
- 1100-3000 db	-12.25 (2.26)	0.004 (0.052)	16.7 (1.52)	0.38 (0.03)	-77 (17)	-2 (0.4)	0	-2
- 3000-5000 db	-6.45 (2.82)	0.477 (0.059)	4.4 (1.18)	0.11 (0.03)	-10 (4)	0.6 (0.1)	0.8	-0.3
Total					191 (79)	-0.4 (2)	-11	11
Horizontal	0 (0)	0 (0)			-114 (20)	5 (0.4)	0	5
Overturning	17.21 (4.13)	-0.55 (0.09)			312 (88)	-6 (2)	-10	4

Section average C_{anth} concentration: 14.7 µmol kg⁻¹ in 2004 to 17.1 µmol kg⁻¹ in 2012

473	Table 2. Averages and trends for different components of anthropogenic carbon transports,
474	volume transports, and transport-weighted anthropogenic carbon concentrations with associated
475	standard deviation / standard error estimates, and their contribution to Canth transport trends.
476	Transport-weighted Canth concentrations are calculated by dividing the Canth transport by the
477	volume transport. Volume transport values come from ref ²³ . The interior relates to the ocean
478	east of the Bahamas (essentially all transport excluding Florida Straits). 1000 Tg C = 1 Pg C.
479	

481 METHODS

Hydrographic Data. Dissolved inorganic carbon (DIC), total alkalinity, oxygen, dissolved 482 inorganic nutrients [nitrate, phosphate, silicate], CFC-12 and salinity from bottle samples 483 combined with temperature and pressure data from CTD sensors were used from repeat cruises at 484 24.5°N in 1992^{14,36}, 1998¹³, 2004³⁷, 2010³⁸ and 2011³⁹ and across Florida Straits in 2012⁴⁰. Data 485 consistency was ensured by comparing with historical data as part of GLODAPv2.2019⁴¹; all 486 adjustments identified were applied. Anthropogenic carbon was calculated for each bottle using 487 four techniques (ϕCT_o^{42} , TrOCA⁴³, ΔC^{*44} , Transit Time Distributions-TTD⁴⁵) following 488 established methods³⁹. Although its representativeness is questioned⁴⁶ TrOCA was included to 489 enable comparison with previous studies 9,39,42 . 490

491

492 Mixed layer bottle locations (density within $\sigma\theta = 0.03$ kg m⁻³ of the surface⁴⁷) were treated 493 separately as here traditional techniques struggle to quantify C_{anth} and its seasonal cycle - either 494 relationships between nutrient utilisation, remineralisation and oxygen concentrations (used 495 within back-calculation methods) break down, or the behaviour of CFCs and CO₂ (used by TTD 496 and Δ C* methods) decouple⁴⁸ due to their saturation state being dependent on distinct processes 497 e.g. temperature (both), biology and R*f* (carbon only). Mixed layer C_{anth} was therefore calculated 498 using a new method: SPIDEr (Scaled PreIndustrial DisEquilibrium).

499

SPIDEr method for mixed layer anthropogenic carbon. This circumvents/corrects a number
 of assumptions inherent in many C_{anth} methods (e.g. constant preindustrial seasonal atmospheric
 CO₂ concentration, CO₂ disequilibrium unchanged from preindustrial era, oxygen at 100%
 saturation). Extended Data Figure 4 summarises the calculation pathway applied to individual

4°latitude x 5° longitude boxes between 24-28°N and 78-12°W, and an additional Florida Straits
box (25-27°N, 80.2-79.3°W). It involves:

1. Calculating regional seasonal cycles in sea surface pCO₂ disequilibrium from modern 506 observations: following ref⁴⁹, historical observations of contemporary sea surface fCO₂ are from 507 the Surface Ocean Carbon Dioxide Atlas (SOCAT) database⁵⁰ and temporally-coincident 508 atmospheric XCO2 mole fraction observations are from ref.⁵¹; both were converted to pCO₂⁵² 509 using in situ temperature and NCEP local sea-level atmospheric pressure fields⁵³ to generate 510 regionally-specific ΔpCO_2 time-series. Mean annual ΔpCO_2 cycles were calculated by Fourier 511 512 analysis; their removal from the sea surface timeseries revealed no significant trend between 513 2002-2012; the mean ΔpCO_2 cycle (winter-spring undersaturation, summer-fall oversaturation) 514 was therefore considered representative of the observational period.

515 2. Seasonal ΔpCO_2 cycles adjusted to preindustrial era by estimating the difference between the 516 impact of physical (temperature/salinity) and biological (nutrient) changes on modern and preindustrial carbon concentrations. Spring-to-fall changes in temperature/salinity were 517 calculated from climatological data⁵⁴ and applied to annual mean climatological chemical 518 properties (DIC, alkalinity, salinity, nutrients⁵⁴) using CO2SYS⁵⁵ to propagate their impact on 519 ΔpCO_2 . The impact of biological activity was estimated using winter-to-summer changes in 520 phosphate converted to ΔDIC using a C:P stoichiometric ratio of 117 following the ' ΔC^* ' C_{anth} 521 method - this integrative C:P estimate has been successfully applied in the Atlantic and globally 522 to derive C_{anth} fields and enhance intercomparison of studies^{4,29,56}, but likely underestimates true 523 system variability⁵⁷; Δ DIC was then applied to annual mean climatological chemical properties 524 (temperature, alkalinity, salinity⁵⁴) using CO2SYS⁵⁵ to calculate biologically-mediated ΔpCO_2 . 525 Both steps were repeated for a preindustrial scenario by removing the mean annual C_{anth} signal 526

527 (calculated using the φ CT_o method applied to climatological data) from contemporary DIC 528 levels; changes in preindustrial pCO₂ caused by temperature or biological activity were 69-72% 529 of the change in pCO₂ observed at contemporary DIC levels.

530 3. Preindustrial ΔpCO_2 seasonal cycles are combined with estimated preindustrial atmospheric 531 CO₂ seasonal cycles to generate 4°latitude x 5° longitude box-specific preindustrial seawater 532 pCO₂ cycles. Preindustrial atmospheric CO₂ is calculated from modern GLOBALVIEW-CO2 533 atmospheric CO₂⁵¹ combined with NCEP/NCAR temperature and sea level pressure fields⁵³ and 534 deconvolved into a long-term atmospheric C_{anth} increase and a seasonally variable natural 535 background signal.

4. Using in situ alkalinity and nutrients (assumed unaffected by anthropogenic CO₂ invasion)
with preindustrial pCO₂ at the time of year of the modern measurements, the water sample's
preindustrial DIC is calculated.

5. The residual between preindustrial and contemporary DIC concentrations is C_{anth}.

540

541 RAPID-MOCHA-WBTS-Argo array data. Ten-day temperature and salinity fields across $26.5^{\circ}N^{26}$ were used to calculate volume transports and 10-day C_{anth} fields. For the upper 1760 542 543 dbar, 0.25° longitude by 20 dbar grids of temperature and salinity are generated every 10 days by 544 optimal interpolation of data from Argo floats and moored sensors; below 1760 dbar, salinity and 545 temperature fields are linearly interpolated between moored sensors on the boundaries, with regions deeper than the moorings accounted for by extrapolation based on repeat hydrography 546 abyssal structure. Volume transports were calculated by combining horizontal velocities from the 547 gridded fields with circulation elements in the RAPID overturning calculation²¹. The UK-US 548 549 RAPID array (Figure 1) uses submarine-cable-based transport estimates through Florida Straits

550

at 27°N⁵⁸, ERA-Interim wind derived estimates of Ekman transport⁵⁹ and ocean interior transport estimates from moored data. The calculations generate a net volume (or freshwater) transport of 1.17 Sv southward across 26.5°N based on a salinity flux constraint at Bering Strait ²⁶.

553

552

554

Predictive regression equations (PREs) for C_{anth}.

For each C_{anth} method, C_{anth} is determined for all available hydrographic bottle data prior to 555 556 recalculating mixed layer values according to the SPIDEr approach. Linear C_{anth} growth rates were calculated in six isopycnal intervals (uNACW: $\sigma_0 < 26.7$ kg m⁻³, INACW: 26.7 kg m⁻³ 557 $^{3}<\sigma_{0}<27.2$ kg m⁻³, AAIW: 27.2 kg m- $^{3}<\sigma_{0}<27.6$ kg m⁻³, uNADW: $\sigma_{0}>27.6$ kg m⁻³ and $\sigma_{2}<37$ kg 558 m⁻³, INADW: $\sigma_2 > 37$ kg m⁻³ and $\sigma_4 < 45.9$ kg m⁻³, AABW: $\sigma_4 > 45.9$ kg m⁻³) in five longitude 559 ranges (Florida Straits, 78-70°W, 70-46°W, 46-30°W, 30-10°W)³⁹, and used to normalise all 560 C_{anth} data to a mid-year of 2002.5. As the constituent data are from multiple seasons, the pooled 561 normalised data cover a greater parameter range than individual hydrographic cruises, 562 563 particularly in surface waters. Predictive regression equations (PREs) are generated by applying multiple linear regressions of the normalised C_{anth} according to norm $C_{anth} = a^*\theta + b^*Sal + c^*pres$ 564 + d*lon + y⁰, where a-d are predictive coefficients, ' θ ' is potential temperature, 'Sal' is salinity, 565 'pres' is pressure, 'lon' is longitude and ' y^0 ' is a constant. Individual PREs are generated for 566 each isopycnal-regional box as in Extended Data Fig. 1, with outliers identified using a 3x mean 567 568 Cook's Distance discriminating threshold and removed prior to rerunning. Extended Data Table 1 shows PRE coefficients for the $\Delta C^* C_{anth}$ method. PRE root-mean-square errors (Extended 569 Data Fig. 1b) are largest (but lowest relative to signal size) in surface layers where Canth loadings 570 and seasonal variability are highest, but are generally at or below Canth estimation uncertainty (~6 571 µmol kg-1). PRE goodness-of-fit (Extended Data Fig. 1c) shows greater variability, and 572

573 highlights where either the predictive parameter is insufficiently covered by available measurements, or where the predictive parameters do not co-vary sufficiently with C_{anth}. PREs 574 perform less well where C_{anth} levels change quickly with depth but temperature and salinity do 575 576 not (typically ~800-1800 dbar, associated with Canth minimum and maximum of Antarctic Intermediate Water and upper North Atlantic Deep Water respectively). PRE residuals are 577 578 normal distributed about zero with no apparent vertical or spatial structure (Extended Data Fig. 579 2). However, PRE goodness-of-fit plots (Extended Data Fig. 3) display a general trend of 580 regressions over(under)-estimating lower (higher) concentrations i.e. estimated values tend 581 towards the isopycnic/regional box mean. The variability in available predictive parameter space 582 (temperature, salinity, pressure, longitude) thus does not fully describe Canth variability, but on a 583 regional box basis uncertainties will likely cancel and errors in predicted values tend towards the 584 regional C_{anth} mean. For all methods, analyses of standardised (Zscore) predictors identify 585 salinity as the most important predictor variable, except in the upper layers away from the 586 western boundary where temperature and pressure have similar influence.

587

10-day estimates of C_{anth}. For each 10-day period between spring 2004 and fall 2012, the 588 predictive regressions are applied to temperature and salinity fields²⁶ derived from RAPID 589 590 mooring / Argo float data (binned according to Extended Data Fig. 1a criteria) to estimate Canth. 591 The mixed layer is defined as the maximum mixed layer depth (MLD, determined using density within $\sigma\theta = 0.03$ kg m⁻³ of the surface⁴⁷) from the preceding winter – ensuring that winter waters 592 temporarily isolated from atmospheric interaction during summer are still described by the same 593 594 regression equation as the waters above, rather than falling within the bin below. Predicted 595 surface layer C_{anth} (Extended Data Fig. 5 for 2009, 63.375°W) shows highest concentrations (late summer/early fall) associated with potential temperature maxima and neutral density, R*f* and MLD minima. The C_{anth} signal is diluted as cooling drives stratification breakdown, reaching a spring minimum as MLD (and R*f*) peaks. Pooled together, 10-day estimates of time-independent C_{anth} (normalized to 2002.5) are created. For each time-point Δ C_{anth} growth rates are reintroduced, using identical linear trends that normalized the original data set, generating final C_{anth} estimates reflective of the 2004-2012 time period.

602

Canth transports across 26.5°N. 10-day Canth and velocity fields are combined according to 603 $T_{(Canth)} = \iint vC_{anth} dxdz$, where the C_{anth} transport, $T_{(Canth)}$, is given by the horizontal (x) and vertical 604 (z) integral of the C_{anth} field multiplied by the velocity field υ^{17} . The overturning transport 605 component $T^{o}_{(Canth)}$ is calculated as $T^{o}_{(Canth)} = \int \langle v \rangle \langle C_{anth} \rangle dz$, where zonally-averaged fields of 606 607 anthropogenic carbon (C_{anth}) and velocity (v) with section average removed are combined and vertically integrated (z) across the full section. The horizontal transport component $T^{h}_{(Canth)}$ 608 meanwhile is calculated as $T^{h}_{(Canth)} = \iint v' C_{anth} dx dz$, and is the horizontal (x) and vertical (z) 609 integral of the combination of the deviation from the zonal-mean anthropogenic carbon C_{anth} and 610 velocity v' fields. The through flow component $T^{f}_{(Canth)}$ is calculated as $T^{f}_{(Canth)} = T^{f}(C_{anth})^{(26.5N)}$ -611 C_{anth} (BS) where C_{anth} is the zonal-mean field for C_{anth} at 26.5°N (calculated here) and Bering 612 Strait (BS, from ref 15) and T^{tf} is the net volume through flow transport. Florida Straits are treated 613 separately; here, C_{anth} (including updated mixed layer C_{anth} estimates) from hydrographic 614 sections in 2004, 2010 and 2012 (US GOMECC⁴⁰) are combined with volume transport 615 estimates derived from hydrographic CTD profiles. Transport-weighted Canth estimates are used 616 617 to create temporally-predictive regressions (Extended Data Fig. 6a) that are applied to the high 618 frequency time-series of subsea cable-derived volume transport estimates. Combining Florida

Straits Canth transports with ocean interior analogues yields 10-day Canth transports across 26.5°N 619 620 (Extended Data Fig. 6b,c). All Canth methods show small, temporally-consistent systematic offsets from each other. These are due to slight differences in mean surface-to-depth Canth 621 622 gradients caused by the differing methodological assumptions of each technique. The TTD 623 method is an exception; its offset changes with time, resulting from using CFC-12 alone to 624 estimate mean water mass age. Decreasing atmospheric CFC-12 levels since ~2000 inhibit its 625 ability to fully characterise the ventilation of the youngest waters, but it is the only transient tracer to have been measured on all hydrographic cruises with carbon data. 626

627

Uncertainties in C_{anth} transport estimates from observations. Following the approach used 628 for salinity and freshwater transports across 26.5°N²⁶ the uncertainty of individual 10-day 629 normalised Canth transport estimates is calculated by estimating and combining Canth-derived 630 631 uncertainty (σCT_C) and transport-derived uncertainty (σCT_T). The uncertainty associated with both initial estimates of Canth and the linear trends in Canth (treated independently in the full 632 633 section and Florida Straits) is then also assessed. The two combine to generate final Canth 634 transport uncertainties. For each subregion, σCT_C is calculated by combining the uncertainty in C_{anth} concentrations (σC_{reg}) with the average volume transport (T_{reg}). The transport-derived 635 uncertainty is calculated by combining the subregional transport uncertainty σCT_T and the C_{anth} 636 anomaly ($C_{reg} - C_{sect}$) where the C_{anth} section average is 19.2 µmol kg⁻¹. Uncertainties were 637 calculated for individual regional water masses, the Bering Strait, Ekman layer, and Florida 638 Straits²⁶ (Extended Data Table 2). Uncertainty relating to input C_{anth} fields and Δ C_{anth} trends was 639 calculated by a Monte-Carlo approach: individual systematic offsets randomly-derived from a 640 normal distribution of twice the estimation uncertainty (6 µmol kg⁻¹) were applied to each input 641

642 hydrographic cruise dataset while similar offsets were applied to trends, randomly-derived from within the trend uncertainties³⁹. The average standard deviation of 600 individual estimates at 643 each timepoint gave an uncertainty of 0.037 Pg C yr⁻¹. Combining all the above uncertainties in 644 645 quadrature generates an estimate of the total uncertainty for each 10-day Canth transport estimate of 0.135 Pg C yr⁻¹. If it is assumed that within a year there can be 12 independent estimates of the 646 C_{anth} transport, then uncertainty in the annual average C_{anth} transport is 0.135 / (12)^{1/2} = 0.039 Pg 647 C yr⁻¹. For the 8.5-year time-series there are then 102 independent estimates of the C_{anth} 648 transport, meaning the uncertainty of the full time-series average C_{anth} transport is 0.135 / (102)^{1/2} 649 $= 0.0134 \text{ Pg C yr}^{-1}$. 650

651

652 Uncertainties from surface C_{anth} seasonality calculation

653 The impact of not accounting for seasonality in surface C_{anth} concentrations was investigated by propagating 3 additional surface Canth estimates to that described above through the Canth 654 655 transport calculation: 1. using unadjusted raw bottle C_{anth} estimates; 2. assuming C_{anth} to be 100% 656 saturated at all times; 3. applying SPIDEr (Extended Data Figure 4), but assuming modern and preindustrial ΔpCO_2 cycles are identical. For 1. the C_{anth} seasonal cycle amplitude was ~3x larger 657 than any other application (and implausible through what we know of sea-surface CO_2 flux 658 659 dynamics); much higher C_{anth} concentrations for ~9-10 months of the year, resulted in elevated Ekman, horizontal and total C_{anth} transports (with full time-series average ~15% higher) and 660 661 exaggerated seasonal cycles in each. A negligible horizontal transport trend led to the total Canth transport trend becoming negative. For cases 2 and 3., a reversed seasonal cycle resulted: Canth 662 highest (lowest) in winter (summer), the opposite to that expected from Rf variability^{5,54}. In 2., a 663 664 greatly reduced west-to-east gradient in Canth concentrations resulted, leading to reduced 665 southward horizontal circulation and a total transport average ~12% higher than that presented 666 here. In 3., a west-to-east concentration gradient was maintained but at systematically higher concentrations; this generated stronger Canth overturning and horizontal components but to 667 668 differing extents, causing a net decrease in the average total C_{anth} transport of ~4% compared to results presented here. Failing to account for seasonality in CO₂ disequilibria and C_{anth} can 669 670 therefore generate inverted seasonal cycles, and unfeasible concentration ranges and longitudinal 671 gradients. These subsequently affect calculated Ekman, horizontal, overturning and total Canth transports and their trends, and may be a factor in previous hydrographic section-derived C_{anth} 672 673 transport estimates.

Uncertainties in Canth transport estimates from PRE and Canth methodologies. We test the 674 robustness and appropriateness of the PRE method using an analysis of model data where model 675 676 Canth 'truth' is known. We use monthly fields from the 1° NEMOv3.2 ocean model with the MEDUSA-2 marine biogeochemistry model embedded^{e.g.60}, between 1980-2100 across 26.5°N. 677 678 Model truth C_{anth} was calculated as the residual of parallel runs (with atmospheric growth of 679 carbon and climate change effects at RCP8.5, and without), and combined with directly output velocity fields to give C_{anth} transports for 2004-2013 of 0.223 ± 0.061 Pg C yr⁻¹ (mean \pm standard 680 deviation of monthly values). PRE-predicted Canth fields (estimated using PRE methodology 681 682 applied to model truth Canth, temperature, pressure, salinity outputs as for observations) were combined with the same velocity fields, enabling direct comparison with model truth Canth 683 684 transports (Extended Data Fig. 7). Within this, several experiments were conducted, adjusting 685 PRE data and trend inputs/treatments additively, to quantify the contributions of individual PRE methodological assumptions and their impact on the overall uncertainty in Canth transport 686 estimates. These were: (1) PRE method applied as for observations, using same vertical data 687

688 resolution (~20 data points per station), input data timepoints (one month each from 1992-1998-689 2004-2010-2011), identical longitudinal/isopycnal boxes optimised to observational hydrographic distributions, and assuming linear ΔC_{anth} trends; (2) PRE regions optimised to 690 691 model hydrographic distributions/transport fields (these differed significantly from observations 692 due to low model resolution); (3) PRE training data extended to cover all months of years 1992-693 1998-2004-2010-2011; (4) non-linear ΔC_{anth} trends; and finally, (5) increased vertical data resolution (~60 data points per station). Iteration (1) resulted in a 2004-2013 C_{anth} transport mean 694 \pm standard deviation of 0.234 \pm 0.059 Pg C yr⁻¹, a net residual from the model truth of 5% (0.011 695 Pg C yr⁻¹), with essentially identical monthly variability. Approximately 35% of the residual 696 697 from model truth was explicable by insufficient vertical data resolution, $\sim 23\%$ by the assumption 698 of linear Canth growth rates, and the remainder due to PRE regions being poorly optimised to 699 local hydrographic/transport fields. Iteration (2) was most faithful to the method's application to observations, and gave a 2004-2013 mean \pm standard deviation of 0.229 \pm 0.061 Pg C yr⁻¹, a 700 2.9% residual from model truth (0.223 \pm 0.061 Pg C yr⁻¹). Individual monthly transport estimates 701 702 had an average absolute residual of 4%, with best estimates in May-June (average 1.6% 703 difference), poorest in September-October (average ~8.5% difference). Iteration (5) is considered 704 the best estimate of the abilities of the PRE method - for 2004-2013 it reduced the mean to 705 within 1% of model truth, and average absolute residuals of monthly estimates to 2.5%. This underlines the suitability of the PRE methodology in estimating the magnitude of Canth transports 706 707 over multiple timescales, and application to observational datasets.

⁷⁰⁸ 'Back-calculation' C_{anth} estimation methods have been widely used to quantify the accumulation ⁷⁰⁹ of C_{anth} in the oceans^{e.g.4,5,9,13–15,17,37,39,42–44,56,61,62}, and we applied three derivations based on ⁷¹⁰ biogeochemical parameters to observations. Of these we applied the ΔC^* method⁴⁴ to model

711	outputs to test its effectiveness in estimating C _{anth} distributions and C _{anth} transport variability and
712	magnitude compared to model truth. Ref ⁴⁴ was followed for the calculation of ' ΔC^* ', but using
713	alternative parameterizations for preformed alkalinity ⁶³ and preformed preindustrial DIC ⁶² . The
714	disequilibrium term was determined from ' ΔC^* ' derived from the model control run (with a
715	preindustrial atmosphere). Canth estimates were combined with model velocity fields and the
716	resultant C _{anth} transports compared to model truth (Extended Data Fig. 8). A correlation of 0.97
717	between the two time-series occurred with an average residual of 2.2 $\times 10^{-4}$ Pg C yr ⁻¹ (0.5%) for
718	the 2004-2013 period. Individual monthly transport estimates had mean absolute residuals of
719	7.2%, and annual average absolute differences of 0.010 Pg C yr ⁻¹ (4.5%). These differences are
720	small, predominantly caused by control run ' ΔC^* ' drift and deficiencies in the model's
721	biogeochemical fields that impact the use of observation-based parameterizations, e.g. preformed
722	alkalinity. Together, the estimates indicate that the back-calculation is useful for estimating C_{anth} .

725 DATA SOURCES

- Raw hydrographic datasets are at <u>https://cchdo.ucsd.edu/</u>. Final adjusted hydrographic datasets
- 727 are available from GLODAP (<u>https://www.glodap.info/</u>). AMOC estimates are available from
- the RAPID programme website (<u>https://www.rapid.ac.uk/</u>).
- 729 Atmospheric CO₂ is available from the GLOBALVIEW-CO2 web resources (GLOBALVIEW-
- 730 CO2. Cooperative Atmospheric Data Integration Project Carbon Dioxide; NOAA ESRL,
- 731 Boulder, Colorado; Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path:
- ccg/co2/GLOBALVIEW). Sea surface pCO₂ observations are from the Surface Ocean Carbon
- 733 Dioxide Atlas SOCAT: <u>https://www.socat.info/</u>. NCEP/NCAR temperature and sea level
- 734 pressure fields are available from
- 735 <u>https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html</u>.
- 736

737 DATA AVAILABILITY

- 738 The carbon transport data that support the findings of this study are available from the British
- 739 Oceanographic Data Centre (<u>https://www.bodc.ac.uk/</u>) at
- 740 https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/b6bb9f45-f562-68a4-
- 741 <u>e053-6c86abc0e48b/</u>. The doi of this dataset is 10.5285/b6bb9f45-f562-68a4-e053-
- 6c86abc0e48b, and the data citation is : Brown P.J., McDonagh E., Sanders R., Watson A.J.,
- 743 Wanninkhof R.H., King B.A., Smeed D., Baringer M.O., Meinen C.S., Schuster U., Yool A.,
- 744 Messias M. (2020). Anthropogenic carbon transports at 26N as estimated using the RAPID-
- 745 MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western
- 746 Boundary Time Series) array for 2004 to 2012. British Oceanographic Data Centre Natural

- 747 Environment Research Council, UK. doi: 10/fn4j. The dataset will also be accessible from the
- 748 RAPID-Atlantic Biogeochemical Fluxes programme webpage (http://www.rapid.ac.uk/abc).

751	
-----	--

752 METHODS REFERENCES

- Guallart, E. F., Pérez, F. F., Rosón, G. & Ríos, A. F. High spatial resolution Alkalinity and
 pH measurements along 24 . 5 ° N in 1992 Institut de Ciències del Mar , CSIC Passeig
 Marítim de la Barceloneta , 37-49 08003 Barcelona , Spain Instituto de Investigaciones
 Marinas , CSIC Eduardo Cabello , 6 Facultad . 5, (2010).
- Brown, P. J., Bakker, D. C. E., Schuster, U. & Watson, A. J. Anthropogenic carbon
 accumulation in the subtropical North Atlantic. *J. Geophys. Res.* 115, C04016 (2010).
- 37. Schuster, U. *et al.* Measurements of total alkalinity and inorganic dissolved carbon in the
 Atlantic Ocean and adjacent Southern Ocean between 2008 and 2010. *Earth Syst. Sci. Data* 6, 175–183 (2014).
- 38. Guallart, E. F. *et al.* Trends in anthropogenic CO2 in water masses of the Subtropical
 North Atlantic Ocean. *Prog. Oceanogr.* 131, 21–32 (2015).
- Wanninkhof, R. *et al.* Ocean acidification along the Gulf Coast and East Coast of the
 USA. *Cont. Shelf Res.* 98, 54–71 (2015).
- 766 40. Olsen, A. *et al.* GLODAPv2.2019 an update of GLODAPv2. *Earth Syst. Sci. Data* 11, 1437–1461 (2019).
- Vázquez-Rodríguez, M. *et al.* Anthropogenic carbon distributions in the Atlantic Ocean:
 data-based estimates from the Arctic to the Antarctic. *Biogeosciences* 6, 439–451 (2009).
- 770 42. Touratier, F., Azouzi, L. & Goyet, C. CFC-11, Δ 14 C and 3 H tracers as a means to assess 771 anthropogenic CO 2 concentrations in the ocean. *Tellus B* **59**, 318–325 (2007).
- 43. Gruber, N., Sarmiento, J. L. & Stocker, T. F. An improved method for detecting

773		anthropogenic CO2 in the oceans. Global Biogeochem. Cycles 10, 809-837 (1996).
774	44.	Waugh, D. W., Hall, T. M., Mcneil, B. I., Key, R. & Matear, R. J. Anthropogenic CO 2 in
775		the oceans estimated using transit time distributions. Tellus B Chem. Phys. Meteorol. 58,
776		376–389 (2006).
777	45.	Yool, A., Oschlies, A., Nurser, A. & Gruber, N. A model-based assessment of the TrOCA
778		approach for estimating anthropogenic carbon in the ocean. <i>Biogeosciences</i> 7, 723–751
779		(2010).
780	46.	de Boyer Montégut, C., Madec, G., Fischer, A., Lazar, A. & Iudicone, D. Mixed layer
781		depth over the global ocean: An examination of profile data and a profile-based
782		climatology. J. Geophys. Res. 109, C12003 (2004).
783	47.	Álvarez, M. & Gourcuff, C. Uncoupled transport of chlorofluorocarbons and
784		anthropogenic carbon in the subpolar North Atlantic. Deep Sea Res. Part I Oceanogr. Res.
785		<i>Pap.</i> 57 , 860–868 (2010).
786	48.	Landschützer, P. et al. A neural network-based estimate of the seasonal to inter-annual
787		variability of the Atlantic Ocean carbon sink. <i>Biogeosciences</i> 10 , 7793–7815 (2013).
788	49.	Bakker, D. C. E. et al. A multi-decade record of high-quality fCO2 data in version 3 of the
789		Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8, 383-413 (2016).
790	50.	GLOBALVIEW-CO2. Cooperative Atmospheric Data Integration Project - Carbon
791		Dioxide; NOAA ESRL, Boulder, Colorado; [Also available on Internet via anonymous
792		FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW]. (2011).
793	51.	Körtzinger, A. Methods of Seawater Analysis, Chap. Determination of Carbon Dioxide
794		Partial Pressure (pCO2). Verlag Chemie 149–158 (1999).
795	52.	Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc.

796 77, 437–471 (1996).

- 797 53. Takahashi, T. *et al.* Climatological distributions of pH, pCO2, total CO2, alkalinity, and
 798 CaCO3 saturation in the global surface ocean, and temporal changes at selected locations.
 799 *Mar. Chem.* 164, 95–125 (2014).
- 800 54. van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E. & Wallace, D. W. R. *MATLAB*801 *Program Developed for CO2 System Calculations, ORNL/CDIAC-105b*. (2011).
- doi:10.3334/CDIAC/otg.CO2SYS_MATLAB_v1.1
- 803 55. Gruber, N. Anthropogenic CO2 in the Atlantic Ocean. *Global Biogeochem. Cycles* 12, 165–191 (1998).
- 805 56. Martiny, A. C. *et al.* Strong latitudinal patterns in the elemental ratios of marine plankton
 806 and organic matter. *Nat. Geosci.* 6, 279–283 (2013).
- 807 57. Baringer, M. O. N. & Larsen, J. C. Sixteen years of Florida Current transport at 27 N.
 808 *Geophys. Res. Lett.* 28, 3179–3182 (2001).
- B09 58. Dee, D. P. *et al.* The ERA-Interim reanalysis: configuration and performance of the data
 assimilation system. *Q. J. R. Meteorol. Soc.* 137, 553–597 (2011).
- Sound State Sta
- 814 60. Álvarez, M., Ríos, A. F., Pérez, F. F., Bryden, H. L. & Rosón, G. Transports and budgets
 815 of total inorganic carbon in the subpolar and temperate North Atlantic. *Global*
- 816 *Biogeochem. Cycles* **17**, 1002 (2003).
- 817 61. Lee, K. *et al.* An updated anthropogenic CO2 inventory in the Atlantic Ocean. *Global*818 *Biogeochem. Cycles* 17, art. no.-1116 (2003).

819	62.	Brewer, P. G., Bradshaw, A. L., Shafer, D. K. & Williams, R. T. Measurements of total
820		carbon dioxide and alkalinity in the North Atlantic Ocean in 1981. in The Changing
821		Carbon Cycle: A Global Analysis (eds. Trabalka, J. R. & Reichle, D. E.) 348-370
822		(Springer, 1986).
823		

826 EXTENDED DATA LEGENDS

827 Extended Data Figure 1. PRE regions and performance statistics. (a) Data bin locations for generation of independent predictive multiple linear regressions for C_{anth} estimation, (b) 828 individual predictive PRE root mean square error, and (c), individual predictive PRE R² for each 829 data bin for $\Delta C^* C_{anth}$. Box colors and numbers relate to Extended Figures 3 & 4. 830 831 Extended Data Figure 2. PRE residuals (predicted C_{anth} – bottle C_{anth}) plotted against 832 **depth. a**, for individual PREs, **b**, for all outputs binned, for $\Delta C^* C_{anth}$. Numbers and colors relate 833 834 to regions in Extended Data Figure 1a. Dots relate to Western basin, circles to Eastern basin 835 Extended Data Figure 3. Bottle C_{anth} estimates versus PRE predicted C_{anth} for $\Delta C^* C_{anth}$. 836 837 Numbers and colors relate to regions in Extended Data Figure 1a. Black lines indicate unity. Red lines indicate linear least squares fit of bottle estimates versus predicted. Dots relate to Western 838 839 basin, circles to Eastern basin 840 841 Extended Data Figure 4. Schematic of PreIndustrial DisEquilibrium (SPIDEr) mixed layer Canth calculation. Blue colour implies preindustrial era, yellow colour implies modern era. 842 843 Numbers on left refer to explanations in Methods text. 844 Extended Data Figure 5. Variability in predicted surface layer C_{anth.} For 2009 at 62.375°W 845 846 with C_{anth} plotted against **a**, pressure, **b**, neutral density and **c**, potential temperature. Color refers 847 to time of year. 848

Extended Data Figure 6. C_{anth} transports across Florida Straits and 26.5°N. a, transportweighted C_{anth} transports and volume transports for Florida Straits in 2004, 2010 and 2012. Lines
are linear predictive fits. TTD has no data for 2012. b, C_{anth} transports across 26.5°N on 10-day
(thin lines) and 3-month filtered (thick lines) timescales for 2004.3-2012.8 for four C_{anth}
calculation methods with 2004-2012 averages and standard deviation.

855

849

Extended Data Figure 7. Application of C_{anth} transport calcaultion methodology to model outputs. Anthropogenic carbon transports (a,c) and their residual from the model truth (b,d) for 1980-2100 (a,b) and 2004-2013 (c,d) for five unique applications of the PRE methodology applied to 1° NEMO-MEDUSA model outputs. Legend lists colour schemes of model truth, and different modifications of PRE methodology applied. For conversion of carbon transports, 660 kmol s⁻¹ = 0.25 Pg C yr⁻¹.

862

863 Extended Data Figure 8. Application of back-calculation C_{anth} methodology to model 864 outputs. Top: Anthropogenic carbon transports for 1980-2100 for 1. application of $\Delta C^* C_{anth}$ 865 calculation method to 1° NEMO-MEDUSA model outputs combined with model velocity fields, 866 and 2. model truth. Bottom, as for top but for 2004-2013. Monthly values and 12-month running 867 mean shown for both. For conversion of carbon transports, 660 kmol s⁻¹ = 0.25 Pg C yr⁻¹.

- 868
- 869

870 Extended Data Table 1. Predictive coefficients a-d and constant y^0 from PREs for

- 871 **individual bins**, according to norm $C_{anth} = a^*\theta + b^*Sal + c^*pres + d^*lon + y^0$, where ' θ ' is
- potential temperature (°C), 'Sal' is salinity, 'pres' is pressure (dbar), and 'lon' is longitude (°E).
- 873 Results here are from $\Delta C^* C_{anth}$ outputs.

875 **Extended Data Table 2.** C_{anth} transport uncertainty estimates. Key to column headings:

σT_{reg}, uncertainty in regional transport; C reg, regional C_{anth} average; C sect, section C_{anth} average; 876 $(C_{reg} - C_{sect})$, regional C_{anth} anomaly; σCT_T , C_{anth} transport transport-related uncertainty; σC_{reg} , 877 uncertainty in regional C_{anth} average; T_{reg} , regional transport; σCT_C , uncertainty in C_{anth} transport 878 due to uncertainty in Canth; oCT, total uncertainty. Section-averaged Canth (Csect) is estimated as 879 18.8 x 10⁻⁶ kmol m⁻³ (~18 µmol kg⁻¹). Combining in quadrature, each 10-day estimate of C_{anth} 880 transport has an uncertainty of 0.135 Pg C yr⁻¹. Assuming that there are 12 independent estimates 881 in the year then the uncertainty on the annual average C_{anth} transport is 0.135 Pg C yr⁻¹/(12)^{1/2} = 882 0.039 Pg C yr⁻¹. Assuming there are 102 independent estimates across the full 8.5-year time-883 series then the uncertainty on the full time-series average Canth transport is 0.135 Pg C yr 884 $^{1}/(102)^{1/2} = 0.013 \text{ Pg C yr}^{-1}$. 885

886

